Tag Archives: combat sports

Shoulder Stabilziation for Striking: are you Focusing on the Right Muscles?

When considering upper body striking, martial artists tend to focus on the pectoral, triceps and deltoid muscle groups, and the glenohumeral (GH) joint, which is the most obvious shoulder joint. The GH joint consists of the humerus and the glenoid fossa of the scapula (the “socket” of the shoulder blade). Since this joint is essentially like a ball resting on a shallow dish, and not a deep socket like the hip joint, ligaments and the attached muscles provide most of the stability. There are also three other joints in the shoulder complex that play important roles in maintaining stability for the GH joint, with the scapulothoracic being most prone to abuse in combative training. This joint is formed by the fibrous connection of the scapula to the posterior torso wall, which allows the scapula to glide and rotate as the GH joint requires.

The serratus  anterior and the trapezius provide the ability to adduct (pull close to the ribcage), retract, depress, and upwardly or downwardly rotate the scapulae.  They maintain alignment of the glenoid fossa  with the head of the humerus.  A strong, reasonably flexible rotator cuff group is important, but the trapezius needs to be able to provide rotation and stabilization so that the GH joint stays centered and the rotator cuff isn’t impinged. The trapezius and serratus need to work synergistically with the GH joint movers. Striking in general requires the same coupling of scapular and humeral actions that has been reported for other overhand actions  (Kibler, et. al., 2007) such as the tennis serve.

Continue reading

Specificity of Conditioning in Fight Activities: Basic Concepts & Application

Specificity of training is the basis on which all modern physical training rests. Briefly, to produce a desired physiological adaptation, a training program must place sufficient stress on the physiological systems in question (Willmore & Costill, 2004). In training environments this is commonly referred to as Specific Adaptations to Imposed Demands (SAID).  Adaptations to training are limited to the physiological system overloaded by the program. This includes neuromotor, morphological, hormonal and metabolic elements. Fighting activities (encompassing both combat sports and fighting/self protection scenarios) present a unique programming challenge, requiring a range of adaptations to all systems.

Continue reading

Basic Thoracic Spine Injury Prevention for Fighting Arts & Combat Sports

The actions of fighting arts (including combatives and self-defense systems) and combat sports place regular high stresses on the spinal column. I’ve previously mentioned the anterior-posterior compressive and shear forces that affect the lumbar spine, but not the transverse rotational (torsional) and lateral compressive forces that actions like punching, kicking, throwing and falling places on the thoracic spine. Basic fighting postures, such as a standing guard or striking can encourage thoracic kyphosis and lateral asymmetry.  Left unchecked, torso actions can become plagued by dominant muscular patterns of imbalance to one side or the other, as a result of a favored limb or ingrained movement compensations due to faulty stabilization or movement system activity. Over time these muscular imbalances  can lead to vertebral facet degradation and arthritis, disk herniations and ruptures, nerve entrapment and bone spurs (typically in the direction of excessive muscular tension), all of which translate to reduced performance.

Curvature of a healthy spinal column. Note the lateral symmetry.

Continue reading

A Brief Discussion on the Relativity of Skills

Ed. Note: while the examples used in the piece below relate to punching and recreational/athletic MA training, the concepts can easily be applied to all other fighting skills and situations in which they might be used.

How many ways are there to skin a cat? Or in this case, throw a punch? Among both novice and experts (and “experts”), it can seem as if there is a “right” way to perform a fighting skill, yet variations are to be found from style to style,  from individual to individual, and even from moment to moment within the same encounter. The Q & A below came out of a discussion with martial artist and CSCS Daniel Ramos (fellow ATSU Human Movement Science alum).

Continue reading

Using the Overhead Squat Assessment to Identify Reductions in Punching Quality

The overhead squat assessment promoted by NASM (Clark & Lucett, 2011) provides a useful evaluation of the functional status of the latissimus dorsi during a common movement (video example here). The OHS requires that both trunk extension and shoulder flexion occur simultaneously, either or both of which may be altered if the muscle has become chronically shortened and tight. When the lats are hypertonic, shoulder range or motion (ROM) is altered due to excessive internal rotation and depression of the humerus, which further affects the actions of the scapula. This can be seen when an individual’s arms habitually fall forward past the line of the torso during the eccentric phase of the squat in an OHS evaluation, which is an indication of the arthrokinematic (joint movement) compensations needed to accommodate functional ROM as the muscle attempts to maintain a shorter distance between origin and insertion (for an excellent visual of how this occurs, take a look here).

Rear view of the latissimus dorsi. Note the broad connection to the pelvis, and the insertion on the humerus. An overactive (hypertonic) lat will cause alterations in shoulder and hip function, impairing good technique by reducing strength and mobility, while increasing the chances of an avoidable chronic injury.

Continue reading

Spinal Overuse Injuries in the Fighting Arts: Risk Factors and Prevention Strategies

The modern understanding of “the core” and the need to properly condition it has become well known among athletic and active people, including martial artists (yes, the importance of the hips has been belabored for centuries, but the modern anatomically based concept is not necessarily the same thing). The core refers to the muscles, connective tissues and bones of the torso, yet to many it’s just the rectus abdominis (the “6-pack’).  However, the core can be more accurately thought of as the support, stabilization and movement system for the spinal column. This stack of 33 vertebrae (24 moving and 9 fixed) is connected by many ligaments and muscles, which provide oppositional tension akin to the guy wires on a tall tower.

Continue reading

More on Rhabdomyolysis and the Fighting Arts

This is a follow up to Bob’s introduction to rhabdomyolysis as it relates to martial artists.

Rhabdomyolysis is the destruction of skeletal muscle leading to the release of the muscular tissue components  creatine kinease (CK) and myoglobin into the bloodstream (Huerta-Alardin, Varon & Marik, 2004). These components can pose a potential serious risk to the kidneys as they are cleared from the blood stream. Rhabdo can be caused by numerous factors, and can cause symptoms ranging in severity from mild to life threatening. Classic symtpoms include muscle pain, weakness and darkened urine (ranging from pinkto cola colored). Blood tests reveal elevated serum CK and myoglobin levels. More severe cases may present symptoms such as malaise, fever, tachycardia, nausea and vomiting (Huerta-Alardin et al., 2004). In severe cases acute renal failure can result, requiring medical attention.

Continue reading